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Abstract

Landslides are one of the most hazardous threats
worldwide, posing significant geo-environmental
challenges including loss of life, destruction of
infrastructure, damage to properties, degradation of
agricultural lands and impacting human society. An
attempt has been made to prepare the Landslide
Susceptibility Zonation (LSZ) map with the help of
nineteen geospatial thematic layers using the
Geospatial Frequency Ratio (GSFR) model at Idukki
district of Kerala, India. The landslide inventory
dataset of 1,850 landslide points was identified from
historical records (NASA-Co-operative Open Online
Landslide Repository (COOLR) and Google Earth
dataset divided into training (1,295-70%) and testing
(555-30%).

The inventory data and landslide conditioning
parameters are used to establish a prediction model of
landslide susceptibility. The results showed that 6.22%
of the district area falls under very high susceptibility
while 17.9 % is categorised as having high
susceptibility. Receiver operating characteristic curve
(ROC) and area under the curve (AUC) are used to
validate the success rate and prediction rate of
landslide susceptibility. The FR model achieved the
accuracy with a success rate of 0.827 and a prediction
rate of 0.835 in the current study.

Keywords: Landslide susceptibility, Geospatial Frequency
Ratio model, Landslide inventory, ROC-AUC.

Introduction

Landslides are recurring geophysical disasters, particularly
in hilly regions, causing significant damage to landscapes
and the environment!®, These events can be triggered by
natural and human-induced factors such as extreme rainfall,
heavy winds, earthquakes, floods, volcanic eruptions,
construction along slopes, mining activities and debris
flows?’. Landslides are a global issue and not confined to
specific regions or Nations. In India, the National Disaster
Management Authority (NDMA), a central government
organization, has identified landslide-prone areas,
particularly in the plateau margins of the Western Ghats and
parts of the Eastern Ghats, encompassing the States of
Karnataka, Tamil Nadu, Kerala and Maharashtra. Kerala,
particularly in the Western Ghats, features hilly terrain with
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steep slopes and fragile geological formations, making it
inherently susceptible to landslides.

The heightened susceptibility arises from a combination of
natural factors and human-induced activities?'. A 2024 study
by the World Weather Attribution group revealed that
human-induced climate change has amplified the intensity
of Kerala's heavy rains by approximately 10%, significantly
increasing the likelihood of landslides.

Additionally, human activities such as deforestation,
unplanned construction and quarrying exacerbate the risks,
further destabilizing the region's delicate landscape. The
assessment of deforestation and landscape details through
physical surveys and manual preparations can be time-
consuming and labour-intensive. To address these
challenges, the integration of remote sensing and GIS tools
within geospatial technologies offers a comprehensive and
efficient approach, delivering valuable information to
planners and managers for effective decision-making.

Analysing the spatial and temporal changes caused by
human activities such as deforestation, overgrazing,
intensive farming and cultivation on steep slopes, which can
lead to slope instability, highlights the importance of remote
sensing data as a valuable resource for decision-makers.
Based on the spatial relationships between past landslides
and their conditioning factors, the assessment and mapping
of landslide susceptibility using geospatial technologies
enable the prediction and prevention of future landslide
occurrences. Landslide susceptibility, which represents the
probability of landslide occurrence under specific geological
and geomorphological conditions, highlights spatial
variations in landslide occurrences and helps to identify
areas that are most prone to such events?®.

Geospatial technologies assist decision-makers, scientists
and researchers in understanding past landslides and their
conditioning factors. These technologies facilitate the
assessment and mapping of landslide susceptibility, enabling
the prediction and prevention of future landslide
occurrences. Storing this information in databases simplifies
analysis and facilitates the derivation of actionable insights.
This data supports informed planning and management,
enabling effective mitigation of such risks. The demarcation
of landslide susceptibility zones using GIS software requires
the effective extraction of topographic parameters such as
slope gradient, slope aspect and plan curvature from digital
elevation models (DEMs).
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Additionally, it involves evaluating landslide probability
based on the hydrogeology and geological conditions of the
area, capturing the spatial variation of landslide occurrences
and identifying areas most likely to experience such events.
Although various modeling approaches using GIS have been
widely applied to landslide susceptibility mapping,
determining the most effective method for predicting
landslide-prone areas remains a challenge.

To address the challenges in landslide-prone regions, the
current research focuses on Idukki district in Kerala, India,
which is highly susceptible to natural hazards due to its
changing climatic conditions and diverse topographical
features. The State's location, bordered by the Arabian Sea
to the west and the steep slopes of the Western Ghats to the
east, further exacerbates its vulnerability to disasters.
According to the Kerala State Disaster Management Plan
2016, notable landslides such as the Pettimudi landslide in
2020 and the Kokkayar landslide in 2021 have highlighted
the recurring nature of such events. Kerala experiences
frequent landslides with debris flows being the most
commonly occurring phenomenon. Therefore, assessing
landslide susceptibility in the hilly regions of the state is
essential for developing effective mitigation strategies to
reduce the impact of such disasters.

Landslide susceptibility mapping is crucial for predicting
and mitigating landslides, especially in regions prone to
natural hazards. Various modeling approaches are employed
for this purpose, each offering different strengths and
limitations. Deterministic models, for instance, are built
upon the mechanisms and processes that govern landslide
deformation and failure. These models calculate safety
factors using static approaches'®2%:33, However, they require
extensive physical and hydrological data derived from
laboratory tests, making them suitable only for small-scale
applications®1334, Despite their accuracy in modeling
specific mechanisms, deterministic models often fall short
when larger, more diverse data sets are needed across
broader landscapes. As a result, their application is often
limited to specific sites or smaller regions where such
detailed data is available.

In contrast, statistical models offer a more flexible approach
by analysing the relationship between past landslides and
their conditioning factors through mathematical models6.22,
These models work with large datasets to determine
weighting factors, making them highly adaptable when data
is available. However, the reliability of statistical models can
be compromised when the dataset is incomplete or lacks
sufficient information®®. Recent advancements have led to
the development of several statistical methods such as
logistic regression”*231, weights of evidence models’:30:36.38
and frequency ratio models®92841,

Furthermore, data mining techniques including artificial

neural networks®1231, support vector machines*#?. Decision
trees®1718 have also been applied in landslide susceptibility
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mapping. Among these, the evidential belief function (EBF)
model?2°%5, based on Bayesian theory, has gained
popularity for its ability to combine expert knowledge and
statistical data, providing robust predictions for landslide
zoning. GIS-supported EBF applications have demonstrated
effective results in landslide susceptibility assessments,
combining both expert input and data-driven models®2433:40,

Study area

The study area is Idukki district in the Western Ghats,
Kerala, located between longitude 76°.62', 77°.41", latitude
9°.27', 10°.35". The district boundaries are Pathanamthitta
district in the south, Thrissur in the north, Kottayam district
in the west and Tamilnadu in the east. The Idukki district
has four taluks, Devikulam, Udubanchola, Peerumade and
Thodupuzha. The tallest peak in south India is Anamudi
peak situated in the Idukki district with an altitude of
2,694m™., This region slopes towards the West, except the
Northeast where its slopes towards the East. The major rivers
of the district are Thodupuzhayar, Periyar and Thalayar
rivers. The district receives an average annual rainfall of
about 3,677mm3’. The maximum temperature ranges from
25.1 to 31.5 °C and the minimum temperature from 18.6 to
14.0 °C.

The major soil types in the Idukki are forest loam, lateritic
soils, brown hydromorphic soils and alluvial soils'*. The
predominant landforms in the study area are denudational
hills and structural. The district has three major rocks,
Peninsular gnessis complex, Charnockite group of rocks and
Migmatitic complex. Idukki district, located in Kerala, India,
is renowned as the "Spice Garden of Kerala" due to its
diverse agricultural activities. The district cultivates a wide
range of crops including spices like cardamom, pepper,
nutmeg, cinnamon, ginger, turmeric, garlic and cocoa as well
as plantation crops such as rubber, tea, coffee and coconut.

Other crops include rice, sugarcane, tapioca, cashew nut,
vegetables, tubers and plantains. Its favorable climate and
agro-climatic conditions make it ideal for agriculture.
Additionally, Idukki is known for its animal husbandry
including dairy farming and the rearing of goats, rabbits and
pigs. About 50% of the district is covered by reserved
forests, the average landholding size is 1.01 hectares and
95% of the landholdings are smaller than 2 hectares.The
study area map is represented in the figure 1.

Datasets and Methodology

To generate susceptibility mapping, satellite datasets such as
Landsat 8 (30-meter resolution) play a crucial role in
preparing land use and land cover (LULC) maps. Landslide
magnitude is influenced by various topographical factors
including elevation, slope, aspect, profile curvature®, relief
amplitude, slope classifications and indices such as
Topographic Wetness Index (TWI), Topographic Position
Index (TPI), Terrain Ruggedness Index (TRI), Stream
Transport Index (STI) and Stream Power Index (SPI).
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Furthermore, open street maps, rainfall data and additional
thematic layer datasets acquired from various government
websites are incorporated into the study as outlined in table
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Landslide Conditioning parameters (LCF): The
magnitude of landslides in the study area is influenced by a
combination of topographical, hydrological, geological and

1 and table 2. anthropogenic factors.
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Figure 1: Location Map of the study area: (a) India (b) Kerala (c) Idukki (d) Google Earth image
Table 1
Satellite Data sets used in the landslide susceptibility mapping
S.N. Satellite Data Resolution Description Sources
1 ASTER DEM 30 meters Elevation, SPI, STI, TWI, TPI, Slope https://search.earthdata.nasa.gov
Aspect, Roughness, Slope classes, Profile
Curvature, TRI, Relief Amplitude
2 Landsat 8 30 meters Preparation of land use and Land cover https://earthexplorer.usgs.gov
mapping and Vegetation mapping of the
study area -such as NDVI
Table 2
Thematic layers datasets
S.N. Thematic layers Description Sources
1 Lithology, Digital lithology, Geomorphology and https://bhukosh.gsi.gov.in/Bhukosh/MapViewer.aspx
Geomorphology, Lineament thematic maps
Lineament
2 Cultural features Extract the Road network https://www.openstreetmap.org/
3 Rainfall Gridded Rainfall data for the annual year | https://www.imdpune.gov.in/Clim_Pred LRF_New/
2021 (0.25 X 0.25 Degrees) Grided_Data_Download.html
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Fig. 2: Methodology

Topographical features are derived from the Digital
Elevation Model (DEM) and include parameters such as
elevation, slope, aspect, profile curvature, relief amplitude,
TRI, TPI, TWI, SPI and STI. Hydrological factors
encompass the spatial and temporal patterns of rainfall and
the distance to drainage networks. Geological factors include
lithology, proximity to lineaments and geomorphology.
Anthropogenic factors involve LULC, the assessment of
vegetation vigor through the NDVI and the distance to roads.

Landslide Inventory Map: The Landslide inventory map
(LIM) is a very important aspect of landslide susceptibility
mapping. It helps to recognize the relationship between the
distributions of historical landslide locations and selected
conditioning factors?. In the current study, the inventory data
was generated by 1,850 historical landslide points identified
from historical records (NASA-Co-operative Open Online
Landslide Repository (COOLR) (NASA) and Google Earth
dataset.
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FR model for Landslide susceptibility mapping: In the
present study, landslide susceptibility mapping was
produced by employing GIS based Frequency Ratio model
using 19 landslide conditioning factors and landslide
inventory data. The frequency ratio model? is the geospatial
calculation tool to assess the probabilistic correlation
between the distribution of landslides and each conditioning
factor of the landslide?®.

, number of class pixel
Ratio of area = ! £ Q)
Total no of class pixel

. . b Landslide pixel
Ratio of Landslide = number of Landslide pixe 2

Total no of Landslide pixel

FR = Ratio of landslide (3)

Ratio of area

Relative Frequency(RF) =

FR of each subclass (4)
Total FR of each class

Prediction Rate (PR): The prediction rating of every
landslide conditioning factor was calculated using equation
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(5)%. The frequency ratio model uses relative frequency as
input data.

SA —SApi
P — : Max Min (5)
Min [SApmax —SAmin]

where SA is an indicator of spatial association between
conditioning factor and landslides®>. The maximum,
minimum values and frequency ratio values for FR model

Vol. 18 (9) September (2025)

are in table 3. The Landslide prediction map is shown in
figure 3.

Results and Discussion

The present study is to generate the landslide susceptibility
map of Idukki district, Kerala using frequency model. The
prediction rate values are calculated for all the landslide
conditioning factors and are represented in the table 4.

Table 3
Landslide Conditioning Factors for FR Model of Idukki District
S.N. | Factor | Class Pixel Landslide Ratio of Ratio of FR RF
occurences Area Landslide
1 5— 450 1059762 90109 0.201 0.093 0.463 | 0.098
S 460-880 1367715 530217 0.259 0.547 2110 | 0.447
§ 890-1300 1845512 184011 0.350 0.190 0.543 | 0.115
ﬁ 1400-1800 620434 135637 0.118 0.140 1.190 | 0.252
1900-2700 382771 29404 0.073 0.030 0.418 | 0.089
2 0-9 1275647 98645 0.242 0.102 0.421 | 0.087
© 0-17 1577640 255149 0.299 0.263 0.880 | 0.182
E‘ 18-25 1346198 357589 0.255 0.369 1.446 | 0.300
» 26-35 836492 233334 0.159 0.241 1518 | 0.315
36-75 240217 24661 0.046 0.025 0.559 | 0.116
3 Flat (-1) 77437 949 0.015 0.001 0.067 | 0.007
North (0-22.5) 387875 71138 0.074 0.073 0.998 | 0.111
Northeast (22.5-67.5) 705138 167886 0.134 0.173 1.296 | 0.145
- East (67.5-112.5) 509130 97697 0.096 0.101 1.044 | 0.117
é Southeast (112.5-157.5) 549479 96748 0.104 0.100 0.958 | 0.107
2 South (157.5-202.5) 733796 152710 0.139 0.158 1.133 | 0.126
Southwest (202.5-247.5) 812765 170732 0.154 0.176 1.143 | 0.128
West (247.5-292.5) 587244 88211 0.111 0.091 0.818 | 0.091
Northwest (292.5-337.5) 588475 74932 0.112 0.077 0.693 | 0.077
North (337.5-360) 324855 48374 0.062 0.050 0.810 | 0.090
4 o -39.54 -0 2508799 543497 0.475 0.561 1.179 | 0.402
>
§ 0 305657 52168 0.058 0.054 0.929 | 0.317
>
2| 0.01 - 41.86 2461738 373713 0.467 0.386 0.826 | 0.282
E
o
5 » [ 0-10 2263585 251355 0.427 0.259 0.607 | 0.134
= g 11-20 2134822 513144 0.403 0.529 1.314 | 0.291
T 3 |21-30 702614 182114 0.133 0.188 1417 | 0.314
o g 31-40 147370 18022 0.028 0.019 0.669 | 0.148
>40 50797 4743 0.010 0.005 0.510 | 0.113
6 -0.08-0.1 121138 10434 0.022 0.011 0.494 | 0.102
S 0.11-0.23 683321 164092 0.123 0.169 1.378 | 0.285
@) 0.24-0.3 1258891 336721 0.226 0.347 1534 | 0.317
r 0.31-0.36 2111956 326288 0.380 0.337 0.886 | 0.183
0.37-0.93 1385325 131843 0.249 0.136 0.546 | 0.113
7 0-0.01 1647758 235231 0.312 0.243 0.777 | 0.188
0.02 - 99.65 391302 14228 0.074 0.015 0.198 | 0.048
= 99.66- 193.3 221660 31301 0.042 0.032 0.769 | 0.186
n 193.31 - 498.2 649133 130894 0.123 0.135 1.098 | 0.266
>498.2 2366341 557724 0.448 0.575 1.283 | 0.311
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8 2.09-8.09 1642019 235231 0.311 0.243 0.780 | 0.152

_ 8.1-12.42 1526436 332927 0.289 0.343 1.187 | 0.232

E 12.43 - 15.31 1429252 299729 0.271 0.309 1.141 | 0.223

15.32-19.42 538778 67344 0.102 0.069 0.680 | 0.133

19.43 - 30.42 139709 34146 0.026 0.035 1.330 | 0.260

9 0-92.32 883495 45529 0.167 0.047 0.282 | 0.066

_ 92.33 - 184.64 1572655 288347 0.297 0.297 1.002 | 0.236

(r 184.65 - 268.57 1695139 463822 0.320 0.478 1.496 | 0.353

268.58 - 381.87 906358 146071 0.171 0.151 0.881 | 0.208

381.88 - 1,070.08 241541 25610 0.046 0.026 0.580 | 0.137

10 0-300 1091834 294300 0.196 0.321 1.633 | 0.373

A 301 - 600 977696 189900 0.176 0.207 1.177 | 0.269

E 601-1600 2465091 342900 0.443 0.374 0.843 | 0.193

1601-2600 850290 88200 0.153 0.096 0.628 | 0.144

2601-5594 175668 2700 0.032 0.003 0.093 | 0.021

11 0-0.01 1837266 219600 0.348 0.239 0.687 | 0.235

_ 0.02-3.69 96186 3600 0.018 0.004 0.215 | 0.074

7 3.7-11.07 148482 9000 0.028 0.010 0.348 | 0.119

11.08-22.14 188760 12600 0.036 0.014 0.384 | 0.131

>22.15 3005500 673200 0.570 0.733 1.287 | 0.441

12 _ -3.03-0 2736279 570600 0.518 0.622 1.200 | 0.452

e 0-0.01 46327 5400 0.009 0.006 0.671 | 0.252

0.01-4.95 2502025 342000 0.473 0.373 0.787 | 0.296

13 " Valleys 895611 168300 0.170 0.183 1.081 | 0.234

2 Upper Slopes 622737 60300 0.118 0.066 0.557 | 0.121

< Steep Slopes 1597988 255600 0.302 0.278 0.920 | 0.199

Q Ridges 202639 18900 0.038 0.021 0.537 | 0.116

70) Lower Slopes 1884850 411300 0.357 0.448 1.256 | 0.272

Gentle Slopes 78844 3600 0.015 0.004 0.263 | 0.057

14 0-300 2664830 794700 0.479 0.866 1.806 | 0.656

o 301 - 600 745185 89100 0.134 0.097 0.724 | 0.263

E 601-1600 971392 31500 0.175 0.034 0.196 | 0.071

1601-2600 358125 900 0.064 0.001 0.015 | 0.006

2601-26336 821099 1800 0.148 0.002 0.013 | 0.005

15 0-300 537596 86400 0.097 0.094 0.974 | 0.192

y 301 - 600 470328 73800 0.085 0.080 0.950 | 0.188

E 601-1600 1353039 241200 0.243 0.263 1.080 | 0.213

1601-2600 971441 186300 0.175 0.203 1.162 | 0.229

2601-15517 2228227 330300 0.401 0.360 0.898 | 0.177

16 Water 129775 2700 0.023 0.003 0.126 | 0.024

Trees 3920434 572400 0.705 0.624 0.884 | 0.169

; Flooded Vegetation 4548 0 0.001 0.000 0.000 | 0.000

3 Crops 39586 900 0.007 0.001 0.138 | 0.026

Built Area 394690 223200 0.071 0.243 3.425 | 0.653

bare ground 1071533 118800 0.193 0.129 0.672 | 0.128

17 - 1,116 - 1,837 485144 1800 0.087 0.002 0.022 | 0.006

:,:' 1,838 - 2,558 589223 27900 0.106 0.030 0.287 | 0.076

% 2,559 - 3,280 1256268 319500 0.226 0.348 1.541 | 0.407

< 3,281 -4,001 2159687 449100 0.388 0.489 1.260 | 0.333

ax 4,002 - 4,722 1070309 119700 0.192 0.130 0.677 | 0.179

18 Acid to intermediate 2296498 122400 0.413 0.133 0.323 | 0.021

> charnockite

2 Banded iron formation 2097 900 0.000 0.001 2.600 | 0.170

£ Biotite gneiss 1052113 351000 0.189 0.382 2.021 | 0.133

- Calc granulite 484 0 0.000 0.000 0.000 | 0.000

Calc granulite with limestone 14522 1800 0.003 0.002 0.751 | 0.049
https://doi.org/10.25303/189da011021 16
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Gar-bio-sill gneiss + graphite 26 0 0.000 0.000 0.000 | 0.000
+ kyanite
Garnet-biotite gneiss 309 0 0.000 0.000 0.000 | 0.000
Garnet-sillimanite-gneiss 11 0 0.000 0.000 0.000 | 0.000
+graphite+cordierite
Granite 57571 18000 0.010 0.020 1.894 | 0.124
Hornblende-biotite gneiss 884536 252900 0.159 0.275 1.732 | 0.114
Hornblende-diopside gneiss 9 0 0.000 0.000 0.000 | 0.000
Hypersthene 202 0 0.000 0.000 0.000 | 0.000
gneiss?cordierite
Laterite 504 0 0.000 0.000 0.000 | 0.000
Pink granite gneiss and 1240008 166500 0.223 0.181 0.813 | 0.053
Pegamatite
Pyroxene granulite 5003 1800 0.001 0.002 2.179 | 0.143
Quartz vein/reef 858 0 0.000 0.000 0.000 | 0.000
Quartzite 5568 2700 0.001 0.003 2.937 | 0.193
19 Dam and Reservoir 128450 3600 0.023 0.004 0.170 | 0.025
Flood Plain 222 0 0.000 0.000 0.000 | 0.000
Highly Dissected Hills and 3696919 460800 0.665 0.502 0.755 | 0.111
Py
=2 Valleys
= Low Dissected Hills and 366764 45000 0.066 0.049 0.743 | 0.109
5 Valleys
S Moderately Dissected Hills 908213 374400 0.163 0.408 2.497 | 0.367
R and Valleys
Pediment Pediplain Complex 417062 18900 0.075 0.021 0.274 | 0.040
Waterbodies-Other 3403 0 0.001 0.000 0.000 | 0.000
Waterbody - River 39286 15300 0.007 0.017 2.359 | 0.347
Table 4
Prediction rate (PR) of FR
Factors FR
SA_Max | SA_Min I SA_Max -SA_Min | PR_FR
Elevation 0.447 0.089 0.358 6.876
Slope 0.315 0.087 0.227 4.367
Slope_Aspect 0.145 0.007 0.137 2.633
Profile_curvature 0.402 0.282 0.120 2.308
Relief Amplitude 0.314 0.113 0.201 3.853
NDVI 0.317 0.102 0.215 4.128
SPI 0.311 0.048 0.263 5.051
TWI 0.260 0.133 0.127 2.438
TRI 0.353 0.066 0.286 5.496
DTD 0.373 0.021 0.352 6.759
STI 0.441 0.074 0.367 7.046
TPI 0.452 0.252 0.199 3.823
Slope classes 0.272 0.057 0.215 4.131
DTR 0.656 0.005 0.651 12.492
DTL 0.229 0.177 0.052 1.000
LULC 0.653 0.000 0.653 12.537
RAINFALL 0.407 0.006 0.401 7.696
Lithology 0.193 0.000 0.193 3.698
Geomorphology 0.367 0.000 0.367 7.051
https://doi.org/10.25303/189da011021 17
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Figure 3: Landslide prediction map for Frequency Ratio model

Table 5

Percentage of area of FR model for landslide prediction

Susceptibility class Area in sgkm Area in %
Very low 960.90 19.24
Low 1463.99 29.31
Medium 1365.01 27.33
High 893.97 17.90
Very high 310.69 6.22

The prediction rate (PR) of frequency ratio (FR) analysis
highlights the influence of various conditioning factors on
land susceptibility, with Land Use Land Cover (LULC)
(PR_FR =12.537) and Distance to River (DTR) (PR_FR =
12.492) emerging as the most significant contributors. The
high susceptibility linked to LULC suggests that
anthropogenic activities such as deforestation and urban
expansion, play a crucial role in destabilizing slopes.
Similarly, proximity to rivers increases the likelihood of

https://doi.org/10.25303/189da011021

erosion and soil saturation, leading to higher susceptibility.
Other key factors such as rainfall (PR_FR = 7.696),
geomorphology (PR_FR = 7.051), standardized topographic
index (STI) (PR_FR = 7.046) and elevation (PR_FR =
6.876), also exhibit strong predictive capabilities. These
findings align with existing research, emphasizing the
impact of hydrological and topographic conditions on land
susceptibility. Additionally, parameters like Distance to
Drainage (DTD) (PR_FR = 6.759), Topographic Roughness
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Index (TRI) (PR_FR = 5.496) and Stream Power Index (SPI)
(PR_FR = 5.051) reinforce the importance of terrain
characteristics in determining susceptibility levels.

In contrast, factors such as Slope Aspect (PR_FR = 2.633),
Topographic Wetness Index (TWI) (PR_FR = 2.438) and
Distance to Landslide (DTL) (PR_FR = 1.000) exhibit lower
prediction rates, indicating a relatively minor influence on
susceptibility. Moderate contributors include lithology
(PR_FR = 3.698), slope (PR_FR = 4.367) and NDVI
(PR_FR =4.128), which impact soil stability and vegetation
cover. The results suggest that land susceptibility mapping
should prioritize high-impact factors such as LULC, rainfall,
geomorphology and elevation, which exhibit stronger
correlations with land susceptibility. These insights can be
instrumental in guiding disaster mitigation strategies,
sustainable land-use planning and environmental risk
assessments, ensuring a data-driven approach to land
management.

From table 5, the GSFR model for landslide prediction
categorizes the study area into five susceptibility classes:
very low, low, medium, high and very high, based on the
percentage of land coverage. The largest proportion of the
area falls under the low susceptibility class (29.31%),
covering 1463.99 sg. km. followed by the medium
susceptibility class (27.33%) and accounting for 1365.01 sqg.
km. These findings indicate that a significant portion of the
region experiences moderate to low landslide risk where
occasional instability may occur due to specific triggering
factors such as heavy rainfall or anthropogenic influences.
The very low susceptibility zone covers 960.90 sqg. km.
(19.24%) representing stable terrain with minimal chances
of landslides, often located in areas with gentle slopes and
dense vegetation.

In contrast, the high susceptibility zone spans 893.97 sqg. km.
(17.90%), highlighting regions where landslide occurrences
are relatively frequent, likely influenced by steep slopes,
weak lithology, or hydrological factors. The very high
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susceptibility class, covering the smallest area of 310.69 sqg.
km. (6.22%) represents the most critical regions where
landslides are highly probable. These areas may require
urgent monitoring and mitigation measures, as they pose
significant risks to infrastructure, settlements and human
life. The spatial distribution of susceptibility levels suggests
that targeted intervention strategies should focus on high-
risk zones while promoting sustainable land-use planning in
medium and low-susceptibility areas to prevent future
hazards.

Validation: Validation of landslide-susceptible zones is the
most important step in the whole process. Without validation
the results will have no scientific significance. In the present
study, the LSZ map is produced by the FR model and is
validated by comparing the susceptibility map with training
data (70%) and testing data (30%). The ROC-AUC method
is used to calculate the success and prediction rates of
landslide susceptibility. The success rate accuracy of LSZ
maps was obtained by comparing the landslide point training
data (70%) in figure 4a. The results presented that a success
rate is 0.827 was obtained. Similarly, the prediction rate
accuracy was obtained by comparing the testing data (30%)
shown in figure 4b. The results showed that the prediction
rate is 0.835 obtained. Through the technical analysis, the
FR model achieved excellent accuracy in landslide
susceptibility mapping in the study area.

Conclusion

The Western Ghats region of India faces a large number of
landslide incidents causing huge losses to humans and the
environment. In this study, a GIS-based FR model is used to
predict the landslide-susceptible zones in the Idukki district,
Kerala, India. To produce a susceptibility map of the
landslide, 19 conditioning parameters are considered and
prepared using the ArcGIS Platform. The landslide
susceptibility using the FR model is cross-validated by using
the ROC-AUC method. FR model exhibits higher accuracy
in both the success and prediction rates.
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Figure 4: The success and prediction rate for Landslide susceptibility map (a) Success rate (b) Prediction rate.
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The susceptibility zones are categorized into five classes
through the natural break method: Very low, Low,
Moderate, High and Very High each covering an area of
19.24%, 29.31%, 27.33%, 17.90% and 6.22% respectively
in the study area. According to the results, the distance to
road and LU/LC conditioning factors have strong
association with landslide occurrence, with high prediction
rate. Based on these findings, it is recommended to identify
high and very high-risk zones and take mitigation measures
to reduce the impact of the landslide event in the study area.
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