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Abstract 
Landslides are one of the most hazardous threats 

worldwide, posing significant geo-environmental 

challenges including loss of life, destruction of 

infrastructure, damage to properties, degradation of 

agricultural lands and impacting human society. An 

attempt has been made to prepare the Landslide 

Susceptibility Zonation (LSZ) map with the help of 

nineteen geospatial thematic layers using the 

Geospatial Frequency Ratio (GSFR) model at Idukki 

district of Kerala, India. The landslide inventory 

dataset of 1,850 landslide points was identified from 

historical records (NASA-Co-operative Open Online 

Landslide Repository (COOLR) and Google Earth 

dataset divided into training (1,295-70%) and testing 

(555-30%).  

 

The inventory data and landslide conditioning 

parameters are used to establish a prediction model of 

landslide susceptibility. The results showed that 6.22% 

of the district area falls under very high susceptibility 

while 17.9 % is categorised as having high 

susceptibility. Receiver operating characteristic curve 

(ROC) and area under the curve (AUC) are used to 

validate the success rate and prediction rate of 

landslide susceptibility. The FR model achieved the 

accuracy with a success rate of 0.827 and a prediction 

rate of 0.835 in the current study. 
 

Keywords: Landslide susceptibility, Geospatial Frequency 

Ratio model, Landslide inventory, ROC-AUC. 

 

Introduction 
Landslides are recurring geophysical disasters, particularly 

in hilly regions, causing significant damage to landscapes 

and the environment15. These events can be triggered by 

natural and human-induced factors such as extreme rainfall, 

heavy winds, earthquakes, floods, volcanic eruptions, 

construction along slopes, mining activities and debris 

flows27. Landslides are a global issue and not confined to 

specific regions or Nations. In India, the National Disaster 

Management Authority (NDMA), a central government 

organization, has identified landslide-prone areas, 

particularly in the plateau margins of the Western Ghats and 
parts of the Eastern Ghats, encompassing the States of 

Karnataka, Tamil Nadu, Kerala and Maharashtra. Kerala, 

particularly in the Western Ghats, features hilly terrain with 

steep slopes and fragile geological formations, making it 

inherently susceptible to landslides.  

 

The heightened susceptibility arises from a combination of 

natural factors and human-induced activities21. A 2024 study 

by the World Weather Attribution group revealed that 

human-induced climate change has amplified the intensity 

of Kerala's heavy rains by approximately 10%, significantly 

increasing the likelihood of landslides.  

 

Additionally, human activities such as deforestation, 

unplanned construction and quarrying exacerbate the risks, 

further destabilizing the region's delicate landscape. The 

assessment of deforestation and landscape details through 

physical surveys and manual preparations can be time-

consuming and labour-intensive. To address these 

challenges, the integration of remote sensing and GIS tools 

within geospatial technologies offers a comprehensive and 

efficient approach, delivering valuable information to 

planners and managers for effective decision-making.  

 

Analysing the spatial and temporal changes caused by 

human activities such as deforestation, overgrazing, 

intensive farming and cultivation on steep slopes, which can 

lead to slope instability, highlights the importance of remote 

sensing data as a valuable resource for decision-makers. 

Based on the spatial relationships between past landslides 

and their conditioning factors, the assessment and mapping 

of landslide susceptibility using geospatial technologies 

enable the prediction and prevention of future landslide 

occurrences. Landslide susceptibility, which represents the 

probability of landslide occurrence under specific geological 

and geomorphological conditions, highlights spatial 

variations in landslide occurrences and helps to identify 

areas that are most prone to such events19.  

 

Geospatial technologies assist decision-makers, scientists 

and researchers in understanding past landslides and their 

conditioning factors. These technologies facilitate the 

assessment and mapping of landslide susceptibility, enabling 

the prediction and prevention of future landslide 

occurrences. Storing this information in databases simplifies 

analysis and facilitates the derivation of actionable insights. 

This data supports informed planning and management, 

enabling effective mitigation of such risks. The demarcation 

of landslide susceptibility zones using GIS software requires 

the effective extraction of topographic parameters such as 

slope gradient, slope aspect and plan curvature from digital 

elevation models (DEMs).  
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Additionally, it involves evaluating landslide probability 

based on the hydrogeology and geological conditions of the 

area, capturing the spatial variation of landslide occurrences 

and identifying areas most likely to experience such events. 

Although various modeling approaches using GIS have been 

widely applied to landslide susceptibility mapping, 

determining the most effective method for predicting 

landslide-prone areas remains a challenge. 

 

To address the challenges in landslide-prone regions, the 

current research focuses on Idukki district in Kerala, India, 

which is highly susceptible to natural hazards due to its 

changing climatic conditions and diverse topographical 

features. The State's location, bordered by the Arabian Sea 

to the west and the steep slopes of the Western Ghats to the 

east, further exacerbates its vulnerability to disasters. 

According to the Kerala State Disaster Management Plan 

2016, notable landslides such as the Pettimudi landslide in 

2020 and the Kokkayar landslide in 2021 have highlighted 

the recurring nature of such events. Kerala experiences 

frequent landslides with debris flows being the most 

commonly occurring phenomenon. Therefore, assessing 

landslide susceptibility in the hilly regions of the state is 

essential for developing effective mitigation strategies to 

reduce the impact of such disasters.  

 

Landslide susceptibility mapping is crucial for predicting 

and mitigating landslides, especially in regions prone to 

natural hazards. Various modeling approaches are employed 

for this purpose, each offering different strengths and 

limitations. Deterministic models, for instance, are built 

upon the mechanisms and processes that govern landslide 

deformation and failure. These models calculate safety 

factors using static approaches10,20,33. However, they require 

extensive physical and hydrological data derived from 

laboratory tests, making them suitable only for small-scale 

applications8,13,34. Despite their accuracy in modeling 

specific mechanisms, deterministic models often fall short 

when larger, more diverse data sets are needed across 

broader landscapes. As a result, their application is often 

limited to specific sites or smaller regions where such 

detailed data is available. 

 

In contrast, statistical models offer a more flexible approach 

by analysing the relationship between past landslides and 

their conditioning factors through mathematical models16,22. 

These models work with large datasets to determine 

weighting factors, making them highly adaptable when data 

is available. However, the reliability of statistical models can 

be compromised when the dataset is incomplete or lacks 

sufficient information39. Recent advancements have led to 

the development of several statistical methods such as 

logistic regression7,12,31, weights of evidence models17,30,36,38 

and frequency ratio models5,9,28,41.   

 
Furthermore, data mining techniques including artificial 

neural networks6,12,31, support vector machines4,42.  Decision 

trees3,17,18, have also been applied in landslide susceptibility 

mapping. Among these, the evidential belief function (EBF) 

model23,29,35, based on Bayesian theory, has gained 

popularity for its ability to combine expert knowledge and 

statistical data, providing robust predictions for landslide 

zoning. GIS-supported EBF applications have demonstrated 

effective results in landslide susceptibility assessments, 

combining both expert input and data-driven models3,24,33,40. 

 

Study area  
The study area is Idukki district in the Western Ghats, 

Kerala, located between longitude 76°.62′, 77°.41′, latitude 

9°.27′, 10°.35′. The district boundaries are Pathanamthitta 

district in the south, Thrissur in the north, Kottayam district 

in the west and Tamilnadu in the east.  The Idukki district 

has four taluks, Devikulam, Udubanchola, Peerumade and 

Thodupuzha. The tallest peak in south India is Anamudi 

peak situated in the Idukki district with an altitude of 

2,694m11. This region slopes towards the West, except the 

Northeast where its slopes towards the East. The major rivers 

of the district are Thodupuzhayar, Periyar and Thalayar 

rivers. The district receives an average annual rainfall of 

about 3,677mm37. The maximum temperature ranges from 

25.1 to 31.5 °C and the minimum temperature from 18.6 to 

14.0 °C.  

 

The major soil types in the Idukki are forest loam, lateritic 

soils, brown hydromorphic soils and alluvial soils14. The 

predominant landforms in the study area are denudational 

hills and structural. The district has three major rocks, 

Peninsular gnessis complex, Charnockite group of rocks and 

Migmatitic complex. Idukki district, located in Kerala, India, 

is renowned as the "Spice Garden of Kerala" due to its 

diverse agricultural activities. The district cultivates a wide 

range of crops including spices like cardamom, pepper, 

nutmeg, cinnamon, ginger, turmeric, garlic and cocoa as well 

as plantation crops such as rubber, tea, coffee and coconut.  

 

Other crops include rice, sugarcane, tapioca, cashew nut, 

vegetables, tubers and plantains. Its favorable climate and 

agro-climatic conditions make it ideal for agriculture. 

Additionally, Idukki is known for its animal husbandry 

including dairy farming and the rearing of goats, rabbits and 

pigs. About 50% of the district is covered by reserved 

forests, the average landholding size is 1.01 hectares and 

95% of the landholdings are smaller than 2 hectares.The 

study area map is represented in the figure 1. 

 

Datasets and Methodology 
To generate susceptibility mapping, satellite datasets such as 

Landsat 8 (30-meter resolution) play a crucial role in 

preparing land use and land cover (LULC) maps. Landslide 

magnitude is influenced by various topographical factors 

including elevation, slope, aspect, profile curvature32, relief 

amplitude, slope classifications and indices such as 

Topographic Wetness Index (TWI), Topographic Position 

Index (TPI), Terrain Ruggedness Index (TRI), Stream 

Transport Index (STI) and Stream Power Index (SPI).  
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Furthermore, open street maps, rainfall data and additional 

thematic layer datasets acquired from various government 

websites are incorporated into the study as outlined in table 

1 and table 2. 

 

Landslide Conditioning parameters (LCF): The 

magnitude of landslides in the study area is influenced by a 

combination of topographical, hydrological, geological and 

anthropogenic factors.

 
Figure 1: Location Map of the study area: (a) India (b) Kerala (c) Idukki (d) Google Earth image 

 

Table 1 

Satellite Data sets used in the landslide susceptibility mapping 

S.N. Satellite Data Resolution Description Sources 

1 ASTER DEM 30 meters Elevation, SPI, STI, TWI, TPI, Slope 

Aspect, Roughness, Slope classes, Profile 

Curvature, TRI, Relief Amplitude 

https://search.earthdata.nasa.gov 

2 Landsat 8 30 meters Preparation of land use and Land cover 

mapping and Vegetation  mapping of the 

study area -such as NDVI 

https://earthexplorer.usgs.gov 

 

Table 2 

Thematic layers datasets 

S.N. Thematic layers Description Sources 

1 Lithology, 

Geomorphology, 

Lineament 

Digital lithology, Geomorphology and 

Lineament thematic maps 

https://bhukosh.gsi.gov.in/Bhukosh/MapViewer.aspx 

2 Cultural features Extract the Road network https://www.openstreetmap.org/ 

3 Rainfall  Gridded Rainfall data for the annual year 

2021 (0.25 X 0.25 Degrees) 

https://www.imdpune.gov.in/Clim_Pred_LRF_New/

Grided_Data_Download.html 
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Fig. 2: Methodology 

 

Topographical features are derived from the Digital 

Elevation Model (DEM) and include parameters such as 

elevation, slope, aspect, profile curvature, relief amplitude, 

TRI, TPI, TWI, SPI and STI. Hydrological factors 

encompass the spatial and temporal patterns of rainfall and 

the distance to drainage networks. Geological factors include 

lithology, proximity to lineaments and geomorphology. 

Anthropogenic factors involve LULC, the assessment of 

vegetation vigor through the NDVI and the distance to roads.  

 
Landslide Inventory Map: The Landslide inventory map 

(LIM) is a very important aspect of landslide susceptibility 

mapping. It helps to recognize the relationship between the 

distributions of historical landslide locations and selected 

conditioning factors2. In the current study, the inventory data 

was generated by 1,850 historical landslide points identified 

from historical records (NASA-Co-operative Open Online 

Landslide Repository (COOLR) (NASA) and Google Earth 

dataset. 

FR model for Landslide susceptibility mapping: In the 

present study, landslide susceptibility mapping was 

produced by employing GIS based Frequency Ratio model 

using 19 landslide conditioning factors and landslide 

inventory data.  The frequency ratio model1 is the geospatial 

calculation tool to assess the probabilistic correlation 

between the distribution of landslides and each conditioning 

factor of the landslide26. 

 

𝑅𝑎𝑡𝑖𝑜 𝑜𝑓 𝑎𝑟𝑒𝑎 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑙𝑎𝑠𝑠 𝑝𝑖𝑥𝑒𝑙

𝑇𝑜𝑡𝑎𝑙 𝑛𝑜 𝑜𝑓 𝑐𝑙𝑎𝑠𝑠 𝑝𝑖𝑥𝑒𝑙
                                (1) 

 𝑅𝑎𝑡𝑖𝑜 𝑜𝑓 𝐿𝑎𝑛𝑑𝑠𝑙𝑖𝑑𝑒 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐿𝑎𝑛𝑑𝑠𝑙𝑖𝑑𝑒  𝑝𝑖𝑥𝑒𝑙

𝑇𝑜𝑡𝑎𝑙 𝑛𝑜 𝑜𝑓 𝐿𝑎𝑛𝑑𝑠𝑙𝑖𝑑𝑒 𝑝𝑖𝑥𝑒𝑙
              (2) 

𝐹𝑅 =
𝑅𝑎𝑡𝑖𝑜 𝑜𝑓 𝑙𝑎𝑛𝑑𝑠𝑙𝑖𝑑𝑒

𝑅𝑎𝑡𝑖𝑜 𝑜𝑓 𝑎𝑟𝑒𝑎
                                                           (3) 

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦(𝑅𝐹) =
𝐹𝑅 𝑜𝑓 𝑒𝑎𝑐ℎ 𝑠𝑢𝑏𝑐𝑙𝑎𝑠𝑠

𝑇𝑜𝑡𝑎𝑙 𝐹𝑅 𝑜𝑓 𝑒𝑎𝑐ℎ 𝑐𝑙𝑎𝑠𝑠
            (4) 

 
Prediction Rate (PR): The prediction rating of every 

landslide conditioning factor was calculated using equation 
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(5)25. The frequency ratio model uses relative frequency as 

input data. 

 

𝑃𝑅 =  
𝑆𝐴𝑀𝑎𝑥 −𝑆𝐴𝑀𝑖𝑛

𝑀𝑖𝑛 [𝑆𝐴𝑀𝑎𝑥 −𝑆𝐴𝑀𝑖𝑛]
                (5) 

 

where SA is an indicator of spatial association between 

conditioning factor and landslides25. The maximum, 

minimum values and frequency ratio values for FR model 

are in table 3. The Landslide prediction map is shown in 

figure 3. 

 

Results and Discussion 
The present study is to generate the landslide susceptibility 

map of Idukki district, Kerala using frequency model.  The 

prediction rate values are calculated for all the landslide 

conditioning factors and are represented in the table 4. 

 

Table 3 

Landslide Conditioning Factors for FR Model of Idukki District 

S.N. Factor Class Pixel Landslide 

occurences 

Ratio of 

Area 

Ratio of 

Landslide 

FR RF 

1 

E
le

v
at

io
n
  5 – 450 1059762 90109 0.201 0.093 0.463 0.098 

 460-880 1367715 530217 0.259 0.547 2.110 0.447 

 890-1300 1845512 184011 0.350 0.190 0.543 0.115 

 1400-1800 620434 135637 0.118 0.140 1.190 0.252 

 1900-2700 382771 29404 0.073 0.030 0.418 0.089 

2 

S
lo

p
e 

0-9 1275647 98645 0.242 0.102 0.421 0.087 

 0-17 1577640 255149 0.299 0.263 0.880 0.182 

 18-25 1346198 357589 0.255 0.369 1.446 0.300 

 26-35 836492 233334 0.159 0.241 1.518 0.315 

 36-75 240217 24661 0.046 0.025 0.559 0.116 

3 

A
sp

ec
t 

Flat (-1) 77437 949 0.015 0.001 0.067 0.007 

 North (0-22.5) 387875 71138 0.074 0.073 0.998 0.111 

 Northeast (22.5-67.5) 705138 167886 0.134 0.173 1.296 0.145 

 East (67.5-112.5) 509130 97697 0.096 0.101 1.044 0.117 

 Southeast (112.5-157.5) 549479 96748 0.104 0.100 0.958 0.107 

 South (157.5-202.5) 733796 152710 0.139 0.158 1.133 0.126 

 Southwest (202.5-247.5) 812765 170732 0.154 0.176 1.143 0.128 

 West (247.5-292.5) 587244 88211 0.111 0.091 0.818 0.091 

 Northwest (292.5-337.5) 588475 74932 0.112 0.077 0.693 0.077 

 North (337.5-360) 324855 48374 0.062 0.050 0.810 0.090 

4 

P
ro

fi
le

_
cu

rv
at

u
re

 -39.54 - 0 2508799 543497 0.475 0.561 1.179 0.402 

 0 305657 52168 0.058 0.054 0.929 0.317 

 0.01 - 41.86 2461738 373713 0.467 0.386 0.826 0.282 

5 

R
el

ie
f 

A
m

p
li

tu
d
e 0 - 10 2263585 251355 0.427 0.259 0.607 0.134 

 11-20 2134822 513144 0.403 0.529 1.314 0.291 

 21-30 702614 182114 0.133 0.188 1.417 0.314 

 31-40 147370 18022 0.028 0.019 0.669 0.148 

 >40 50797 4743 0.010 0.005 0.510 0.113 

6 

N
D

V
I 

-0.08 - 0.1 121138 10434 0.022 0.011 0.494 0.102 

 0.11 - 0.23 683321 164092 0.123 0.169 1.378 0.285 

 0.24 - 0.3 1258891 336721 0.226 0.347 1.534 0.317 

 0.31 - 0.36 2111956 326288 0.380 0.337 0.886 0.183 

 0.37 - 0.93 1385325 131843 0.249 0.136 0.546 0.113 

7 

S
P

I 

0 - 0.01 1647758 235231 0.312 0.243 0.777 0.188 

 0.02 - 99.65 391302 14228 0.074 0.015 0.198 0.048 

 99.66- 193.3 221660 31301 0.042 0.032 0.769 0.186 

 193.31 - 498.2 649133 130894 0.123 0.135 1.098 0.266 

 >498.2 2366341 557724 0.448 0.575 1.283 0.311 
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8 
T

W
I 

2.09 - 8.09 1642019 235231 0.311 0.243 0.780 0.152 

 8.1 - 12.42 1526436 332927 0.289 0.343 1.187 0.232 

 12.43 - 15.31 1429252 299729 0.271 0.309 1.141 0.223 

 15.32 - 19.42 538778 67344 0.102 0.069 0.680 0.133 

 19.43 - 30.42 139709 34146 0.026 0.035 1.330 0.260 

9 

T
R

I 

0 - 92.32 883495 45529 0.167 0.047 0.282 0.066 

 92.33 - 184.64 1572655 288347 0.297 0.297 1.002 0.236 

 184.65 - 268.57 1695139 463822 0.320 0.478 1.496 0.353 

 268.58 - 381.87 906358 146071 0.171 0.151 0.881 0.208 

 381.88 - 1,070.08 241541 25610 0.046 0.026 0.580 0.137 

10 

D
T

D
 

0 - 300 1091834 294300 0.196 0.321 1.633 0.373 

 301 - 600 977696 189900 0.176 0.207 1.177 0.269 

 601-1600 2465091 342900 0.443 0.374 0.843 0.193 

 1601-2600 850290 88200 0.153 0.096 0.628 0.144 

 2601-5594 175668 2700 0.032 0.003 0.093 0.021 

11 

S
T

I 

0-0.01 1837266 219600 0.348 0.239 0.687 0.235 

 0.02-3.69 96186 3600 0.018 0.004 0.215 0.074 

 3.7-11.07 148482 9000 0.028 0.010 0.348 0.119 

 11.08-22.14 188760 12600 0.036 0.014 0.384 0.131 

 >22.15 3005500 673200 0.570 0.733 1.287 0.441 

12 

T
P

I -3.03-0 2736279 570600 0.518 0.622 1.200 0.452 

 0-0.01 46327 5400 0.009 0.006 0.671 0.252 

 0.01-4.95 2502025 342000 0.473 0.373 0.787 0.296 

13 

S
lo

p
e 

cl
as

se
s Valleys 895611 168300 0.170 0.183 1.081 0.234 

 Upper Slopes 622737 60300 0.118 0.066 0.557 0.121 

 Steep Slopes 1597988 255600 0.302 0.278 0.920 0.199 

 Ridges 202639 18900 0.038 0.021 0.537 0.116 

 Lower Slopes 1884850 411300 0.357 0.448 1.256 0.272 

 Gentle Slopes 78844 3600 0.015 0.004 0.263 0.057 

14 

D
T

R
 

0 - 300 2664830 794700 0.479 0.866 1.806 0.656 

 301 - 600 745185 89100 0.134 0.097 0.724 0.263 

 601-1600 971392 31500 0.175 0.034 0.196 0.071 

 1601-2600 358125 900 0.064 0.001 0.015 0.006 

 2601-26336 821099 1800 0.148 0.002 0.013 0.005 

15 

D
T

L
 

0 - 300 537596 86400 0.097 0.094 0.974 0.192 

 301 - 600 470328 73800 0.085 0.080 0.950 0.188 

 601-1600 1353039 241200 0.243 0.263 1.080 0.213 

 1601-2600 971441 186300 0.175 0.203 1.162 0.229 

 2601-15517 2228227 330300 0.401 0.360 0.898 0.177 

16 

L
u
/L

c 

Water 129775 2700 0.023 0.003 0.126 0.024 

 Trees 3920434 572400 0.705 0.624 0.884 0.169 

 Flooded Vegetation 4548 0 0.001 0.000 0.000 0.000 

 Crops 39586 900 0.007 0.001 0.138 0.026 

 Built Area 394690 223200 0.071 0.243 3.425 0.653 

 bare ground 1071533 118800 0.193 0.129 0.672 0.128 

17 

R
A

IN
F

A
L

L
 1,116 - 1,837 485144 1800 0.087 0.002 0.022 0.006 

 1,838 - 2,558 589223 27900 0.106 0.030 0.287 0.076 

 2,559 - 3,280 1256268 319500 0.226 0.348 1.541 0.407 

 3,281 - 4,001 2159687 449100 0.388 0.489 1.260 0.333 

 4,002 - 4,722 1070309 119700 0.192 0.130 0.677 0.179 

18 

L
it

h
o
lo

g
y
 

Acid to intermediate 

charnockite 

2296498 122400 0.413 0.133 0.323 0.021 

 Banded iron formation 2097 900 0.000 0.001 2.600 0.170 

 Biotite gneiss 1052113 351000 0.189 0.382 2.021 0.133 

 Calc granulite 484 0 0.000 0.000 0.000 0.000 

 Calc granulite with limestone 14522 1800 0.003 0.002 0.751 0.049 
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 Gar-bio-sill gneiss + graphite 

+ kyanite 

26 0 0.000 0.000 0.000 0.000 

 Garnet-biotite gneiss 309 0 0.000 0.000 0.000 0.000 

 Garnet-sillimanite-gneiss 

+graphite+cordierite 

11 0 0.000 0.000 0.000 0.000 

 Granite 57571 18000 0.010 0.020 1.894 0.124 

 Hornblende-biotite gneiss 884536 252900 0.159 0.275 1.732 0.114 

 Hornblende-diopside gneiss 9 0 0.000 0.000 0.000 0.000 

 Hypersthene 

gneiss?cordierite 

202 0 0.000 0.000 0.000 0.000 

 Laterite 504 0 0.000 0.000 0.000 0.000 

 Pink granite gneiss and 

Pegamatite 

1240008 166500 0.223 0.181 0.813 0.053 

 Pyroxene granulite 5003 1800 0.001 0.002 2.179 0.143 

 Quartz vein/reef 858 0 0.000 0.000 0.000 0.000 

 Quartzite 5568 2700 0.001 0.003 2.937 0.193 

19 

G
eo

m
o
rp

h
lo

g
y
 

Dam and Reservoir 128450 3600 0.023 0.004 0.170 0.025 

 Flood Plain 222 0 0.000 0.000 0.000 0.000 

 Highly Dissected Hills and 

Valleys 

3696919 460800 0.665 0.502 0.755 0.111 

 Low Dissected Hills and 

Valleys 

366764 45000 0.066 0.049 0.743 0.109 

 Moderately Dissected Hills 

and Valleys 

908213 374400 0.163 0.408 2.497 0.367 

 Pediment Pediplain Complex 417062 18900 0.075 0.021 0.274 0.040 

 Waterbodies-Other 3403 0 0.001 0.000 0.000 0.000 

 Waterbody - River 39286 15300 0.007 0.017 2.359 0.347 

 

Table 4 

Prediction rate (PR) of FR 

Factors FR 

SA_Max SA_Min l SA_Max -SA_Min l PR_FR 

Elevation 0.447 0.089 0.358 6.876 

Slope 0.315 0.087 0.227 4.367 

Slope_Aspect 0.145 0.007 0.137 2.633 

Profile_curvature 0.402 0.282 0.120 2.308 

Relief Amplitude 0.314 0.113 0.201 3.853 

NDVI 0.317 0.102 0.215 4.128 

SPI 0.311 0.048 0.263 5.051 

TWI 0.260 0.133 0.127 2.438 

TRI 0.353 0.066 0.286 5.496 

DTD 0.373 0.021 0.352 6.759 

STI 0.441 0.074 0.367 7.046 

TPI 0.452 0.252 0.199 3.823 

Slope classes 0.272 0.057 0.215 4.131 

DTR 0.656 0.005 0.651 12.492 

DTL 0.229 0.177 0.052 1.000 

LULC 0.653 0.000 0.653 12.537 

RAINFALL 0.407 0.006 0.401 7.696 

Lithology 0.193 0.000 0.193 3.698 

Geomorphology 0.367 0.000 0.367 7.051 
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Figure 3: Landslide prediction map for Frequency Ratio model 

 

Table 5 

Percentage of area of FR model for landslide prediction 
Susceptibility class Area in sqkm Area in % 

Very low 960.90 19.24 

Low 1463.99 29.31 

Medium 1365.01 27.33 

High 893.97 17.90 

Very high 310.69 6.22 

 

The prediction rate (PR) of frequency ratio (FR) analysis 

highlights the influence of various conditioning factors on 

land susceptibility, with Land Use Land Cover (LULC) 

(PR_FR = 12.537) and Distance to River (DTR) (PR_FR = 

12.492) emerging as the most significant contributors. The 

high susceptibility linked to LULC suggests that 

anthropogenic activities such as deforestation and urban 

expansion, play a crucial role in destabilizing slopes. 

Similarly, proximity to rivers increases the likelihood of 

erosion and soil saturation, leading to higher susceptibility. 

Other key factors such as rainfall (PR_FR = 7.696), 

geomorphology (PR_FR = 7.051), standardized topographic 

index (STI) (PR_FR = 7.046) and elevation (PR_FR = 

6.876), also exhibit strong predictive capabilities. These 

findings align with existing research, emphasizing the 

impact of hydrological and topographic conditions on land 

susceptibility. Additionally, parameters like Distance to 

Drainage (DTD) (PR_FR = 6.759), Topographic Roughness 
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Index (TRI) (PR_FR = 5.496) and Stream Power Index (SPI) 

(PR_FR = 5.051) reinforce the importance of terrain 

characteristics in determining susceptibility levels. 

 

In contrast, factors such as Slope Aspect (PR_FR = 2.633), 

Topographic Wetness Index (TWI) (PR_FR = 2.438) and 

Distance to Landslide (DTL) (PR_FR = 1.000) exhibit lower 

prediction rates, indicating a relatively minor influence on 

susceptibility. Moderate contributors include lithology 

(PR_FR = 3.698), slope (PR_FR = 4.367) and NDVI 

(PR_FR = 4.128), which impact soil stability and vegetation 

cover. The results suggest that land susceptibility mapping 

should prioritize high-impact factors such as LULC, rainfall, 

geomorphology and elevation, which exhibit stronger 

correlations with land susceptibility. These insights can be 

instrumental in guiding disaster mitigation strategies, 

sustainable land-use planning and environmental risk 

assessments, ensuring a data-driven approach to land 

management. 

 

From table 5, the GSFR model for landslide prediction 

categorizes the study area into five susceptibility classes: 

very low, low, medium, high and very high, based on the 

percentage of land coverage. The largest proportion of the 

area falls under the low susceptibility class (29.31%), 

covering 1463.99 sq. km. followed by the medium 

susceptibility class (27.33%) and accounting for 1365.01 sq. 

km. These findings indicate that a significant portion of the 

region experiences moderate to low landslide risk where 

occasional instability may occur due to specific triggering 

factors such as heavy rainfall or anthropogenic influences. 

The very low susceptibility zone covers 960.90 sq. km. 

(19.24%) representing stable terrain with minimal chances 

of landslides, often located in areas with gentle slopes and 

dense vegetation.  

 

In contrast, the high susceptibility zone spans 893.97 sq. km. 

(17.90%), highlighting regions where landslide occurrences 

are relatively frequent, likely influenced by steep slopes, 

weak lithology, or hydrological factors. The very high 

susceptibility class, covering the smallest area of 310.69 sq. 

km. (6.22%) represents the most critical regions where 

landslides are highly probable. These areas may require 

urgent monitoring and mitigation measures, as they pose 

significant risks to infrastructure, settlements and human 

life. The spatial distribution of susceptibility levels suggests 

that targeted intervention strategies should focus on high-

risk zones while promoting sustainable land-use planning in 

medium and low-susceptibility areas to prevent future 

hazards. 

 

Validation: Validation of landslide-susceptible zones is the 

most important step in the whole process. Without validation 

the results will have no scientific significance. In the present 

study, the LSZ map is produced by the FR model and is 

validated by comparing the susceptibility map with training 

data (70%) and testing data (30%). The ROC-AUC method 

is used to calculate the success and prediction rates of 

landslide susceptibility. The success rate accuracy of LSZ 

maps was obtained by comparing the landslide point training 

data (70%) in figure 4a. The results presented that a success 

rate is 0.827 was obtained. Similarly, the prediction rate 

accuracy was obtained by comparing the testing data (30%) 

shown in figure 4b.  The results showed that the prediction 

rate is 0.835 obtained. Through the technical analysis, the 

FR model achieved excellent accuracy in landslide 

susceptibility mapping in the study area.  

 

Conclusion  
The Western Ghats region of India faces a large number of 

landslide incidents causing huge losses to humans and the 

environment. In this study, a GIS-based FR model is used to 

predict the landslide-susceptible zones in the Idukki district, 

Kerala, India. To produce a susceptibility map of the 

landslide, 19 conditioning parameters are considered and 

prepared using the ArcGIS Platform. The landslide 

susceptibility using the FR model is cross-validated by using 

the ROC-AUC method. FR model exhibits higher accuracy 

in both the success and prediction rates.

 

 
Figure 4: The success and prediction rate for Landslide susceptibility map (a) Success rate (b) Prediction rate. 

(a) (b) 
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The susceptibility zones are categorized into five classes 

through the natural break method: Very low, Low, 

Moderate, High and Very High each covering an area of 

19.24%, 29.31%, 27.33%, 17.90% and 6.22% respectively 

in the study area. According to the results, the distance to 

road and LU/LC conditioning factors have strong 

association with landslide occurrence, with high prediction 

rate. Based on these findings, it is recommended to identify 

high and very high-risk zones and take mitigation measures 

to reduce the impact of the landslide event in the study area.  
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